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Abstract. Recent studies by Handy and Bessis on the effectiveness of a Hankel-Hadamard 
determinant quantisation analysis are generalised to include wavefunction reconstruction. 
For a given bosonic ground-state wavefunction, 'P(x) = eS'", excellent pointwise conver- 
gence to d S / d x  can be readily achieved with very few moments. Our approach also yields 
very good lower and upper bounds to dS/dx.  

1. Introduction 

In earlier works, Handy and Bessis (1985), Handy (1985a) and Bessis et a1 (1987) 
showed that the traditional 'moments problem' (Shohat and Tamarkin 1963) could be 
used to quantise various important physical systems. These were achieved through 
the generation of exponentially convergent lower and upper bounds to the physical 
eigenvalues. Very few moments were required. Of particular importance is that the 
underlying Hankel-Hadamard ( H H )  determinant analysis proved very effective for 
strongly coupled systems, which are not usually amenable to conventional perturbation 
analysis. 

It is natural to ask if similar techniques may be used to reconstruct wavefunctions. 
As will be seen, one can generate rapidly convergent bounds to wavefunctions in a 
pointwise manner. More specifically, for bosonic ground states, 9 ( x )  = eS'"', one can 
obtain narrow bounds for dS/dx  at any x. Such information can be important in 
verifying analytical results generated from W K B  theory (Bender and Orszag 1978), 
particularly near turning points. All this is consistent with work by Handy and Bessis 
(1985) and Handy (1981, 1985b) where it is argued that moments are relevant in 
understanding singular perturbation issues in quantum physics. 

The formalism to be presented here is a new solution to the century old 'moments 
problem', first posed by Stieltjes in 1895. At an intuitive level, the issue of function 
moments reconstruction was addressed as follows. Let the desired wavefunction, 9( x),  
be non-negative. This is true for bosonic ground states (Handy and Bessis 1985). 
Excited bosonic states can be reformulated in terms of non-negative configurations 
(Handy 1985a). The Stieltjes integral is defined by 

Clearly, if 9 ( x )  dies off sufficiently fast at infinity, then I(s) will have a branch cut 
along the negative s axis. The discontinuity in I ( s )  across this cut will yield information 
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2316 C R Handy and R M Williams 

on V(x):  

The Stieltjes integral in equation (1) can be expressed in terms of a moments 
expansion Z(s) = - s)”p( p ) .  This expansion can in turn be approximated through 
Pad6 analysis (Baker 1975). The latter may then be incorporated into equation (2) 
yielding approximations to V. 

From the above discussion it is not surprising that traditional function moments 
reconstruction programmes can be slow, requiring many moments. As will be seen in 
the following, our moments formulation for wavefunction reconstruction is very efficient 
and can yield rapidly convergent pointwise bounds. 

It is important also to take note of the general usefulness of Pad6 resummation 
techniques as applied to analytic expansions of the type V(x)  = C:=ocC,~n. Such 
applications of Padt  analysis are made in order to analytically continue the series 
expansion beyond its domain of convergence. Our  approach differs from such types 
of analysis in that 

( i)  we d o  not require that V(x)  be anywhere analytic, and 
( i i )  our approach gives extremely good bounds to S‘(x), where Y =es. 
It is also important to stress that just as in the usual W K B  analysis our formalism 

explicitly focuses on S’(x). As such, one can see that a moments perspective greatly 
complements WKB theory. 

2. The Hankel-Hadamard moment inequalities 

The principal result of the ‘moment problem’ of concern to us is the Hamburger 
moments theorem (Baker 1975), as follows. 

Let q ( x )  be a function on the real axis. Let p ( p )  =j:x d x x P Y ( x )  be the pth 
Hamburger moment. Then the necessary and sufficient condition that Y ( x )  2 0 (non- 
negative) for all x is ( m  = 0 !) 

p ( m = O )  p ( m + l )  . . .  p ( m  + n )  
p ( m S 1 )  p ( m + 2 )  . . .  p ( m + l + n )  

p ( m + n )  p ( m + n + l )  . . .  p . ( m + 2 n )  

(3) for all n 3 0. 

These relations are referred to as the Hankel-Hadamard inequalities ( H H ) .  

From equation (3)  a variety of alternate formulations are possible. Assume that 
one is interested in $(XI restricted to the interval [ a ,  b ] .  Accordingly, one may apply 
equation (3) to three related functions: $(x), @ ( x )  = (x  - a ) G ( x )  and O(x)  = 

( b  -x )$ (x ) .  It would then follow that each of these must be non-negative throughout 
the entire real axis. This can only be if  $(x) 2 0 on [a, 61 and zero elsewhere. We 
summarise all this below. 

The necessary and sufficient conditions for $(x)  to be non-negative on [a, b ]  and 
zero elsewhere are 

: I.: i !  A , , , = o , n { ~ >  = det 
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The various moments p, (for f = +, 4,Q) correspond to the Hamburger moments over 
the entire real axis, p,( p )  = J:= d x x P F ( x ) .  Because is zero on the complement of 
the closed interval [ a ,  61, it follows that these Hamburger moments are equivalent to 
the moments of P ( X )  restricted to the closed interval [a ,  b ] .  Thus 

p $ ( p )  = loh d x X P W x ) =  P ( P )  

p6( p )  = P ( P  + 1) - W ( P )  

CLcAP)=bP(P)-P(P+1).  

( 5 )  

If a = 0 and b =CO,  then upon ignoring the pel moments, one obtains the usual 
Stieltjes moment problem formulation (Baker 1975). 

In the preceding discussion we have distinguished between and  q. The latter 
is the physical wavefunction, not necessarily zero outside any interval [ a ,  b ] .  The 
former is a truncated wavefunction corresponding to the physical one within the 
specified interval, and  zero outside it. This distinction will become self-evident in the 
following discussion. 

3. A simple example 

In order to demonstrate our approach, consider the simple harmonic oscillator potential 
problem: 

- Vr”+ x*” = E Yr. ( 6 )  

The ground-state eigenvalue, E = 1, is first obtained through the methods of Handy 
and Bessis (1985). For this example the ground state is easy to determine. In general, 
once a Hankel-Hadamard moments determinant analysis has been implemented for 
finding the energy E, one may then focus on wavefunction reconstruction. For equation 
(6) we have 

Yr(x) = N exp(S(x ) )  where S ( x )  = -ix’. (7)  

The factor N represents an arbitrary normalisation. 
Consider the interval [0, CO). It is known from the symmetry of q (all references 

are to the ground state) that Yr’(0) = 0. Accordingly, through an integration by parts, 
equation (6) can be made to yield a moment recursion relation. Firstly, for future 
reference, 

luh dxxPYr’”= bP’4”(b) - a P Y r f ( a )  -p (bP- ’Yr (b )  - a P - ’ Y r ( a ) ) + p ( p  - 1 ) p ( p  -2).  (8)  

For the case a = 0, b = CC, the expression u p  becomes the Kronecker delta 80,p. Assuming 

b P V (  6 )  - 0 and Yr’(0) = 0 
h - 1  

b P T ( b )  - 0 
h - x  

we have from equation (6) 

- f 8 , . p Y r ( o )  -P(P - 1 ) C L (  P - 2) + P ( P  + 2 )  = P (  PI. (9) 
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Examining the odd-order moment relations, p = 2 q +  1 ,  one has ( p ( 2 q +  l ) =  u ( q ) )  

u ( q + l )  = u ( q ) + ( 2 q + 1 ) 2 q u ( q - l ) + 6 , , , , Y ( O ) .  (10) 

I f  we choose the normalisation of Y so that u ( 0 )  = 1 ,  then Y ( 0 )  can be easily obtained. 
Firstly, note 

Clearly, the 
f ( Y )  = q / 2 .  

that the u ( q )  correspond to 

u ( q )  = low d y y q W J y ) / 2  y = x2. (11) 

u ( q )  are then the Stieltjes moments of the modified function measure 
We may thus apply the Stieltjes-HH inequalities formulation in order to 

determine Y(0) .  Specifically, these are Ao,n{u} > 0 and U }  > 0, for n 3 0. From 
equation ( l o ) ,  it is evident that only one parameter, q ( O ) ,  needs to be specified before 
all the moments are determined. Furthermore, from ( 1 0 )  it is also apparent that the 
linear dependence of each u ( q )  upon q ( 0 )  makes each A?,n determinant a polynomial 
in W(0) .  Thus, given a n  arbitrary number N,, it is simple to determine the common 
domain in q ( 0 )  space satisfying the Stieltjes-HH inequalities ( n  s N ,  - 1 ) .  Thus, 
rapidly convergent bounds to the true value q ( 0 )  = 1 can be generated. The results 
are given in table 1. 

Table 1. Application of the H H  inequalities in determining bounds to T (0 )  for the harmonic 
oscillator potential (u(0) = 1). 

Maximum H H  

T-(O) * + ( O )  dimension 

0.45 2.0 1 
0.91 1.17 2 
0.98 1.03 3 
0.998 1.004 4 
0.999 78 1.000 53 5 

Let us now work on the finite interval [0, r ] .  Again Y’(0) = 0  and E = 1 .  Let 
9( r )  5 a, and 9’( r )  /3, and we have 

p r (  p )  = d x  x W ( x )  ( 1 2 )  

W ~ ( P  + 2 )  = p r ( p ) + / 3 r P  - p a r P - ’  + Sp , ,* (O)+P(p  - I ) P ? ( P  - 2 ) .  ( 1 3 )  

The odd-order moments a and p satisfy an  inhomogeneous difference equation. The 
odd-order moments depend upon p r ( l ) ,  a and /3 for their complete determination. 
On the other hand, the even-order moments a and /3 satisfy a homogeneous differ- 
ence equation. Because of this and the fact that moments remain moments if they are 
renormalised by the same factor ( p . , ( p -  + p r ( p ) / a ) ,  we have that the even-order 
moments are effectively determined upon specifying x = pr (0) /a  and I =  p / a .  Note 
also that a is a positive quantity. The reduction in the number of undetermined 
parameters afforded by the even-order moments makes them easier to work with, with 

I: 
and 
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U , ( O )  . . . u , (n )  

u , (n )  . . . u,(2n) 
; Ako] = 

regards to an  H H  analysis. Despite these practical concerns, application of a method 
to be discussed in 8 5 would allow us to reduce the number of undetermined parameters 
in the odd-order moment case, enabling us, in principle, to work with pL,(0) and (Y only. 

Working with the even-order moments in equations (12) and  (13), renormalised 
by a uniform factor of l/a, we have 

u , ( l )  . . .  u , ( l + n )  

U,( 1 + n )  . , . U,( 1 + 2 n )  
> o  A',"= > O  (16a 1 

n 
A ~ o l l  - = 

The above determinants are two-dimensional polynomials in 5 = d ln (V) /d r  and 
x = u, (O) .  The closed algebraic expressions for the H H  determinants of dimensionality 
no more than two are given below. For higher dimensionality we numerically deter- 
mined the polynomial coefficients in 5 for fixed x. More specifically, x was varied in 
small increments within some arbitrarily chosen interval. At each such ,y value, the 
above-mentioned polynomial coefficients (with respect to the 5 variable) were numeri- 
cally determined. On the basis of this, at each fixed ,y value, one could determine the 
common domain in 5 space for which the H H  inequalities are satisfied. For many x 
values, no 5 space domain existed. Accordingly, one would then say that for that 
specific x value there could not exist a physical solution. In this manner the H H  

inequalities rapidly determine smaller and smaller physically allowed two-dimensional 
domains in x-5 space. 

The numerical results for the harmonic oscillator are as follows. The correct physical 
results are ,y = ( 7 ~ / 2 ) " ?  e r f ( r /2)  exp(r'/2), i = - r  (see Abramowitz and Stegun (1972) 
for the 'error function', erf(z)) .  I f  r >  1 it is best to rescale the U, moments so as not 
to incur too large numbers through the recursive moment relations. Thus, denoting 
v , (q )  = u,(q)/r'", the new moment recusion relation is 

{ r2ur (0) -ur (1)}  . . .  {r2u , (n ) -u , (1+n)}  

{ r 2 u r ( n ) -  u , ( l +  n ) } .  . . {r2u,(2n)- u r (1+2n)}  
> 0. (166) 

In addition, the H H  inequalities in equation (16) remain the same with respect to the 
U,, with the one exception that no r' factor appears in the counterpart to equation 
(16b) ! I t  is also more efficient to take into account explicitly the linear difference 
equation nature of the moment recursion relation. Thus 

u , (q )  = x A ( q )  + iB(q  1 + D( q )  A ( O ) = l ,  B(O)=O,  D(O)=O. (18) 
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The H H  inequalities for the U, of dimension at most two (involving moments of 
maximum order three) are 

A?' = ,y > 0 

A:''= Q i 2 ( ~ ) 5 ' +  Q i 1 ( ~ ) 5 +  Q i o ( x )  0 A ~ " = Q x ( x ) ~ ~ +  Q 2 , ( ~ , 5 +  Qm(x)>O 

Ab'' = x + l>  0 Aho') = ( r2  - 1)x - 5 > 0 

:A'O') = ( 2 0 )  
1 1 Q 3 2 ( x ) L 2 +  Q31(X)5+ Q 3 0 ( X ) > O .  

Q12(X) = - 1  

Q 2 2 ( X )  = 1 2 -  r2 

Q20(x)  = - 4 x r 3  - 4 r 2  + lOrx + 6 x 2  

Q~ (x ) = - r3  - 7 x r 2  + r + 1 1 ,y 

The Q functions are 

Q l l ( X )  = - x + x r 2  Q,o(x) = 2 x 2  - 2 x r  

Q>'(,Y) = 2 2 x  + 2 r  - 5xr2+ ,yr4  
( 2 1 )  

QAx) = 6 

Q30(,y) = , y r 5 + x 2 r 4 - 2 x r 3  - 6 ( r x ) '  - 2 r 2 + 5 r x  + 3 x 2 .  

The results of solving the inequalities in equation (20) are given in table 2 .  Only 
three points are specified, for simplicity. These are sufficient to demonstrate the nature 
of our method. A more comprehensive analysis is tabulated in table 3. Note that the 
A, determinant inequalities yield x > 0 and -x < 5 < x( r2 - 1 ) .  

Table 2. Bounds for 5 = dIn(T(r ) ) /dr  and x = u,(O) (harmonic oscillator) using H H  
determinants of dimension at most two. 

r i- i+ Actual x- X +  Actual 

0.1 -0.1000008046 -0.099999 5383 -0.1 0.1003335 0.100 3348 0.100 3340010 
1 -1.141666127 -0.9172141378 - 1  1.31 1.58 1.410686 135 
1.5 -11.319708 59 -0.6307840671 - 1.5 1 20 3.344 663 685 

Table 3. Bounds for 
oscillator. 

and x obtained through higher-order H H  analysis for the harmonic 

Maximum 
order of 

r moments used i- i, X -  X i  

1 4 - 1.141 666 127 -0.996 244 5566 1.41 1.57 
1 5 - 1.000 204 533 -0.999 821 3984 1.4105 1.4109 
1 6 - 1.000 203 598 -0.999 992 1677 1.410 681 1.410 899 
1.5 4 - 11.625 000 00 - 1.280 118 314 3.11 19.50 
1.5 5 - 1.516 928 940 - 1.489 996 285 3.33 3.37 
1.5 6 - 1.516 928 940 - 1.498 690 557 3.3432 3.37 
1.5 7 - 1.500 025 742 - 1.499 956 408 3.3446 3.3447 
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Table 4. Bounds for = dlni F(  R ) I / d R  and  x = u,(O) for the spherical Zeeman hydrogenic 
a tom iZ  = I ,  A = I ,  g = 0, R = 1 I .  

Maximum 
order  of 

E 

0.593 7714 
0.593 7714 
0.593 7714 
0.593 7714 
0.593 7717 
0.593 771 1 

moments used [- 

5 - 2.430 197 
6 - 2.430 690 
7 - 2.396 200 
8 -2.396 140 
8 -2.396 141 
8 -2.396 140 

i+ X -  X i  

- 2.383 500 1.44 1.60 
- 2.398 333 1.47 1.60 
- 2.395 036 1.479 1.485 
- 2.395 560 1.48 1 07 1.485 00 
- 2.395 561 I .48 1 07 1.485 00 
- 2.395 560 1.481 07 1.485 00 

- 

4. A second example 

A more interesting example is afforded by the three-dimensional system corresponding 
to a perturbed hydrogenic atom with a Hamiltonian of the form 

( 2 2 )  
If g = 0, equation ( 2 2 )  defines the spherically symmetric Zeeman problem (Handy and 
Bessis 1985). If A = 0 ,  one  has the spherical Stark effect (Bessis et al 1987). The 
composite system is a zero missing moment problem (Handy and  Bessis 1985), similar 
in structure to the harmonic oscillator problem when viewed from an H H  perspective. 
As explained in the above references, it is best to represent the s-wave ground-state 
wavefunction, ‘P( r ) ,  in terms of an  alternative representation 

F (  r )  = r exp( - ar2 - br)’P( r )  a=J;i7Z b = g / m .  ( 2 3 )  
The function F ( r )  will also be non-negative for the physical solution. Thus all the 
previous analysis is relevant to F ( r )  as well. Its differential equation is 

( 2 4 )  

H = -$T2 - Z / r  + g r  + Ar’. 

rF”+2(2ar2+  b r ) F ’ + [ ( b 2 + 2 a  + 2 E ) r + 2 2 ] F  = 0. 

As mentioned in the previous section, the energy E is first determined through the 
appropriate H H  analysis. For simplicity we limit the following numerical analysis to 
the case g = O  and A = 1. It is then straightforward to show that 0.593 7711 < E  < 
0.593 7717. Taking uR(q)  =j,” d r  r 4 F ( r ) / F ( R ) ,  a simple integration by parts along the 
interval [0, RI yields (note that F ( 0 )  = 0 !) 

2UR( 4 )  + q( 4 + ~ ) U R (  4 - 1 )  + R9”5 - ( 4  -I- 1 ) R 4  + 4UR”4 
2 ( 3 ~  + 2 a q  - E )  ( 2 5 )  

As before, l=  F ’ ( R ) / F ( R )  and ,y = ~ ~ ( 0 ) .  The application of the H H  inequalities 
proceeds as before. The results are quoted in table 4 .  Because the energy is bounded 
from below and  above, we examined the numerical stability of our method by applying 
the H H  inequalities to equation (25 )  for three different energy estimates. All are 
consistent. The non-monotonic behaviours of the 5 bounds are due  to too coarse an 
x partitioning. 

u , ( q + l ) =  

5. The quartic anharmonic oscillator 

We may apply the preceding H H  analysis to the quartic anharmonic oscillator problem 

- ‘ P ” + ( m x 2 + x 4 ) Y  = E’P.  (26 )  
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As explained by Handy and  Bessis (1985) and  Handy (1986), the cases m = 0 and 
m # 0 are similar. Because the former is explicitly solved in the references cited, we 
shall continue our discussion for this case only. 

Once again, the counterpart to equation (15) is 
u , ( q  + 2 )  = E u , ( q )  + l r24-2qrZq- l+2q(2q  - l )u , (q  - 1). (27) 

Unlike equation ( 1 9 ,  the moments of equation (27) are completely determined once 
u,(O) = x ,  U,( 1) = 7) and 5 = Y’( r ) / 9 (  r )  are specified (having first determined E = 
1.060 362 09). We call this a ‘three missing parameter problem’, in keeping with the 
definition of the ‘n  missing moment problem’ of Handy and Bessis (1985). It is possible, 
in principle, to apply the H H  inequalities to the system defined above in equation (27) 
and obtain a succession of smaller and smaller three-dimensional subregions corre- 
sponding to the allowed physical values. Clearly this approach can be time consuming. 
Alternatively, one can apply the methods of Handy (1986) and eliminate some of the 
‘missing parameters’. We briefly outline this approach below. 

We may transform the quartic anharmonic system into many representation spaces 
in which the ground-state wavefunction configuration is non-negative and the moments 
are finite. Thus consider 

2 

@(x)  = 1 ; c,x2’ 1 9 ( x )  (28) 
1=0 

where the e, can be complex. Taking u , ( q )  = ST, d ~ x * ~ @ ( x ) ,  we have 
I 

u , ( q )  = c cFc,u,(q + i + j ) *  (29) 

As in the previous section we may explicitly make manifest the inhomogeneous linear 
difference equation nature of equation (27) in terms of the dependence of the moments 
on the three missing parameters (note that A ( 0 )  = B(1) = 1, A ( l )  = B ( 0 )  = DO,l(0) = 

1.J =O 

D0. , (1)=0) :  

u A q )  = A ( q ) x +  B ( q ) 7 +  D0(9)+ D , ( q ) l .  (30) 
We shall denote the sum of the last two terms by D ( q ) .  Substituting in equation (29) 
gives 

I I I 

1,,=0 I .  I = 0 1.1-0 
u C b ( q ) = x  1 c T c , A ( q + i + j ) + v  1 cTc ,B(q+i+j)+ 1 cTc,D(q+i+j) .  (31) 

As shown by Handy (1986) it is possible to solve for c, which make the 7-series 
coefficient zero for 0 S q i Q, Q being arbitrary. Although the above process is inductive 

Table 5. Bounds for [ and  x using the missing parameter eliminator algorithm ( I  = 7, 
Q = 5, E = 1.060 362 09). Note that M ,  (maximum order of moments used)  cannot exceed 
Q !  

r M, i- i- X- X -  

0.5 3 -0,577 015 3471 -0.574986 0018 0.544 0.557 
0.5 4 -0.577 015 3471 -0.575 79431% 0.5491 0.5570 
0.5 5 -0.575 8040671 -0.575 803 9718 0.549 1656 0.549 1662 
1 3 - 1.479 898 601 -1.371 182 189 1.39 2.06 
1 4 - 1.479 898 601 - 1.398 395 126 1.55 2.06 
1 5 - 1.400 489 I22 - 1.400 373 482 1.550 60 1.5514 
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Table 6. Bounds for i, x and  I) from a n  H H  analysis of equation (27). 

Maximum 
order  of 
moments used r i- i+ X -  X +  17- 17+ 

3 0.5 -0.578 7426 -0.574 7501 0.549 1655 0.549 1661 0.043 0.045 
4 0.5 -0.576 7856 -0.571 4360 0.549 1656 0.549 1661 0.044 1 0.044 5 
5 0.5 -0.575 8040 -0.575 8034 0.549 1656 0.549 1661 0.044 10 0.044 12 

and can be used to eliminate the x coefficient as well, we will not d o  so here. Thus, 
as in the previous examples, we shall be working within a two-dimensional parameter 
space with respect to solving for the H H  inequalities. Note that the c are E dependent 
only ! Since E is calculated first, it follows that the H H  analysis which ensues involves 
fixed c coefficients. However, in solving for the ci it is best to avoid large numbers by 
rescaling the moments and  ci as follows: & ( q )  = u,(q)/g4, ?i = cigi, A ( q )  = A ( q ) / g 4 ,  
etc. The missing parameters 5 and  x are not rescaled. Note that the H H  determinant 
expressions stay the same with respect to the U*+ dependence with the exception that 
the counterpart to equation (166) involves r2u*,(q) - g&( 1 + q )  ! 

Table 5 gives the results of the preceding analysis for two points. In  table 6 we 
corroborate the results of table 5 by implementing a three missing parameter H H  search 
analysis on equation (27). For the latter, two parameters (x and 7)) were varied within 
some arbitrarily chosen two-dimensional rectangular domain. At each such point the 
5-polynomial coefficients were numerically determined, followed by a determination 
of 5 subregions satisfying the H H  inequalities, up  to some given order. As in the 
previous examples, rapid convergence to a small three-dimensional physically allowed 
subregion was observed. 
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